AMPAR Removal Underlies Aβ-Induced Synaptic Depression and Dendritic Spine Loss
نویسندگان
چکیده
Beta amyloid (Abeta), a peptide generated from the amyloid precursor protein (APP) by neurons, is widely believed to underlie the pathophysiology of Alzheimer's disease. Recent studies indicate that this peptide can drive loss of surface AMPA and NMDA type glutamate receptors. We now show that Abeta employs signaling pathways of long-term depression (LTD) to drive endocytosis of synaptic AMPA receptors. Synaptic removal of AMPA receptors is necessary and sufficient to produce loss of dendritic spines and synaptic NMDA responses. Our studies indicate the central role played by AMPA receptor trafficking in Abeta-induced modification of synaptic structure and function.
منابع مشابه
Aβ-Induced Synaptic Alterations Require the E3 Ubiquitin Ligase Nedd4-1.
UNLABELLED Alzheimer's disease (AD) is a neurodegenerative disease in which patients experience progressive cognitive decline. A wealth of evidence suggests that this cognitive impairment results from synaptic dysfunction in affected brain regions caused by cleavage of amyloid precursor protein into the pathogenic peptide amyloid-β (Aβ). Specifically, it has been shown that Aβ decreases surface...
متن کاملGluA1 subunit ubiquitination mediates amyloid-β-induced loss of surface α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors
The accumulation of soluble amyloid-β (Aβ) peptides produces profound neuronal changes in the brain during the pathogenesis of Alzheimer's disease. Excessive levels of Aβ disrupt excitatory synaptic transmission by promoting the removal of synaptic AMPA receptors (AMPARs), dendritic spine loss, and synaptic depression. Recently, activity-dependent ubiquitination of the GluA1 subunit has been sh...
متن کاملβ-amyloid Impairs AMPA Receptor Trafficking and Function by Reducing CaMKII Synaptic Distribution
A fundamental feature of Alzheimer’s disease (AD) is the accumulation of β-amyloid (Aβ), a peptide generated from the amyloid precursor protein (APP). Emerging evidence suggests that soluble Aβ oligomers adversely affect synaptic function, which leads to cognitive failure associated with AD. The Aβ-induced synaptic dysfunction has been attributed to the synaptic removal of AMPA receptors, howev...
متن کاملPhospholipase C is required for changes in postsynaptic structure and function associated with NMDA receptor-dependent long-term depression.
NMDA receptor (NMDAR)-dependent hippocampal synaptic plasticity underlying learning and memory coordinately regulates dendritic spine structure and AMPA receptor (AMPAR) postsynaptic strength through poorly understood mechanisms. Induction of long-term depression (LTD) activates protein phosphatase 2B/calcineurin (CaN), leading to dendritic spine shrinkage through actin depolymerization and AMP...
متن کاملIntracellular amyloid β oligomers impair organelle transport and induce dendritic spine loss in primary neurons
INTRODUCTION Synaptic dysfunction and intracellular transport defects are early events in Alzheimer's disease (AD). Extracellular amyloid β (Aβ) oligomers cause spine alterations and impede the transport of proteins and organelles such as brain-derived neurotrophic factor (BDNF) and mitochondria that are required for synaptic function. Meanwhile, intraneuronal accumulation of Aβ precedes its ex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuron
دوره 52 شماره
صفحات -
تاریخ انتشار 2006